
 
American Institute of Aeronautics and Astronautics 

 
 

1

Architecting the Human Space Flight Program with 
Systems Modeling Language (SysML) 

Maddalena M. Jackson1, Michela Muñoz Fernández 2, Thomas I. McVittie3, and Oleg V. Sindiy4  
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109 

The next generation of missions in NASA’s Human Space Flight program focuses on the 
development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew 
Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to 
venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond.  
Architecting these highly complex system-of-systems requires formal systems engineering 
techniques for managing the evolution of the technical features in the information exchange 
domain (e.g., data exchanges, communication networks, ground software) and also, formal 
correlation of the technical architecture to stakeholders’ programmatic concerns (e.g., 
budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, 
tracking of unknowns). 

This paper will describe how the authors have applied System Modeling Language 
(SysML) to implement model-based systems engineering for managing the description of the 
End-to-End Information System (EEIS) architecture and associated development activities 
and ultimately enables stakeholders to understand, reason, and answer questions about the 
EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2). 

I. Introduction 

his paper describes the use of Model-Based Systems Engineering (MBSE) with SysML to enable more robust 
and complete systems engineering and integrated analysis of complex System-of-Systems (SoS) problems 

which have historically been implemented via paper/presentation-based design capture, disparate models, in 
documents, and in the brains of expert engineers across many disciplines. This paper describes constructs, rules, and 
methods applied in developing a model conforming to a rigorous and engineered structure that supports views for 
domain experts, analysis and tracking of stakeholder concerns, and standardized analysis that uses the relationships 
between the traditional system views to provide cross-cutting reasoning. 

A. Background - To the Moon with Exploration Missions 1 and 2 
Exploration Mission 1 (EM-1) will send an unmanned Orion Multi-Purpose-Crew-Vehicle (MPCV) around the 

moon on a 7-to-10 day mission to qualify NASA’s new Space Launch System (SLS), and verify Orion MPCV’s 
readiness to carry astronauts beyond Earth orbit. EM-1 is targeted for launch in late-2017. Subsequently, 
Exploration Mission 2 (EM-2) will send a crew of four astronauts on a 10-to-14 day mission to the moon, where 
astronauts will spend four days in lunar orbit to test critical mission events and perform operations in relevant 
environments to support exploration to more distant points beyond Earth orbit.  EM-2 is targeted for launch in mid-
2019.  

To accomplish these missions we must coordinate a significant number of diverse terrestrial and space-based 
systems including:  MPCV; SLS; supporting space and terrestrial communication facilities (provided the USAF, 

                                                           
1 Software Systems Engineer, Ground System Architecture and Systems Engineering, 4800 Oak Grove Dr., M/S 

301-285, Pasadena, CA 91109; AIAA Member. 
2 Systems Architect, Ground System Architecture and Systems Engineering, 4800 Oak Grove Dr., M/S 264-767, 

Pasadena, CA 91109; AIAA Member. 
3 Principle Software Systems Engineer, Ground System Architecture and Systems Engineering, 4800 Oak Grove 

Dr., M/S 301-480, Pasadena, CA 91109; AIAA Member. 
4 Systems Architect, Ground System Architecture and Systems Engineering, 4800 Oak Grove Dr., M/S 301-285, 

Pasadena, CA 91109; AIAA Member. 

T 



 
American Institute of Aeronautics and Astronautics 

 
 

2

NASA SCaN and SARSAT); GPS 
satellites; various tracking radars; 
navigation facilities; recovery forces; 
NASA and USAF launch services 
assets (e.g., integration facilities, pads, 
control rooms, optical trackers, 
imagery, etc.); and Mission System 
Operations.   

These systems are in turn 
comprised of hardware and software 
subsystems connected to each other 
via a variety of hardline and RF 
communications links that support the 
exchange of critical data such as 
Commands (CMD), various forms of 
Telemetry (e.g., Operational, 
Developmental, Engineering), File 
Exchanges, Primary and Dissimilar Voice, Video/Motion Imagery, Time, etc. 

To further complicate matters, the configuration of the systems, required data exchanges and communications 
links may change significantly between mission phases (i.e., the required data exchanges and available 
communications links between Mission Operations and the MPCV are significantly different when the MPCV is on 
the pad versus when the vehicle is in flight). Figure 2 provides a high level overview of the configuration for various 
phases of the EM-2 mission—focusing on the EM mission phases, system configurations, critical data exchanges, 

LAS 
Orion 

MPCV 

SLS 

Figure 1: EM-1 & 2 Trajectories and Core Flight Elements 

Figure 2: High-Level Mission Overview Diagram 



 
American Institute of Aeronautics and Astronautics 

 
 

3

and utilized communications links. 
 End-to-End Information Systems (EEIS) System Engineering refers to the process that Systems Engineers use to 
capture the mission’s configuration and assess its ability to meet the mission’s needs. It requires interaction with 
project management and technical stakeholders to define their concerns (e.g., needs, requirements, constraints), and 
capturing/integrating the work of multiple technical subject matter experts (e.g., communications engineers, 
missions operations engineers, avionics engineers, etc.) into a cohesive set of integrated products that address those 
concerns (in IEEE 1471 terminology these products are called “viewpoints”).  
 Since the stakeholders of the EM-1 and EM-2 missions share many of the same concerns as their counterparts in 
the NASA’s earlier Constellation Program (CxP)1 and the Exploration Flight Test (EFT-1) mission2,3, we chose to 
reuse the EEIS viewpoints that they had defined. 

Figure 3 provides an overview of the viewpoints defined for the CxP- and EFT-1 missions including the primary 
set of questions (i.e., concerns) that each viewpoint addresses.  

The viewpoints and their associated views are, as the figure indicates, all produced from the same core model. 
The core model is made up of structures, relationships, and attributes that capture and address the union of all 
stakeholder concerns. Each view is a projection of the core model onto a diagram, where the elements on the 
diagram address the specific subset of concerns of the stakeholder(s) using the specific set views.  

Our work on adding robustness and rigor to the core SysML Models is (initially) scoped to a subset of these 
viewpoints, key aspects of which are described below: 
 
1. Interface Requirements 

Define the high-level requirements that govern the connections (e.g., network communications, exchanges of 
data, etc.) between systems.  The viewpoint captures not only the relationship between requirements (e.g., a 
producer/consumer relationship), but it also captures the requirement’s approval, funding, and implementation 
status. 

 
2. Mission Configurations and Phases Viewpoint:  

The views in this viewpoint address the need to define and communicate the major mission phases (including 
both operations and test/integration), their ordering, and the transitions between them. Examples of mission phases 
would include: Launch Operations, 1st stage ascent with LAS, and Low Earth Orbit Operations. 

 

Figure 3: EEIS Architecture Description Viewpoints 



 
American Institute of Aeronautics and Astronautics 

 
 

4

3. Needlines Viewpoint: 
The needlines viewpoint defines the required exchanges of information between systems during each mission 

phase. The Needlines Viewpoint derives from the DoDAF Operational View-24, in which a needline represents 
exchanges of resources, existing or required. Needlines contain common attributes such as mission phase, mission 
importance, source and sink of the data exchange, maximum allowed latency, completeness, worst case data rate, 
expected data rates, and requirements related to integrity and confidentiality. 

 
4. Connectivity Viewpoint: 

The connectivity viewpoint defines how the systems are connected using various physical communications 
media (such as RF, Wide-Area-Network, umbilical, etc.) and systems that make up the networks (e.g., network 
routers, switches, firewalls, distribution gateways, etc.). The views for this viewpoint sometimes show facilities 
within larger organizations and sites to provide ownership and location clarity. In addition to common attributes 
such as availability and bandwidth, key attributes of a communications link may change depending on the medium: 
for example, RF connections will track the frequency, modulation, bit error rates, etc., while physical connections 
will track number of circuits, their data rates, and maximum drive lengths. 

 
5. Protocol Stacks Viewpoint: 

This viewpoint depicts the protocol stacks that are built, exchanged, and extracted by systems involved in each 
data exchange or software/communications link. The protocol stacks viewpoint modified for EFT-12 presents the 
stacks using a style advocated in CCSDS’s Reference Architecture for Space Data Systems (RASDS) 
Recommended Practice document5 and refines the example viewpoint provided therein. 

B. Learning from our EEIS modeling for CxP and EFT-1  
In both the CxP and EFT-1 EEIS architecture definition activities the systems engineering and integration teams 

used models to generate views from predefined set of governing viewpoints. These viewpoints were successful in 
effectively communicating the configuration of the systems and were widely used to communicate the evolving 
architecture description to both program management and technical staff. The models themselves also provided 
several advantages: (1) a natural point where the systems engineering team could collect key data that had 
previously been scattered across the program and maintained in a variety of documents and presentations, (2) the 
contents of the various viewpoints were always consistent with each other since they were derived from a common 
‘single-source-of-truth’ model, and (3) the process of defining the models forced the technical teams to be more 
rigorous in defining the involved systems, interfaces, and requirements. 

Prior to beginning the EM-1 and EM-2 EEIS architecture definition efforts, we reviewed the prior CxP and EFT-
1 models and identified areas where we should strive to improve.  These fell into four major categories: 

1) Better represent the impact of mission phases on the system configurations and views.  In our prior models, 
the relationship between a mission phase and a view was largely represented by appending the name of the 
phase to the names of the views, data exchanges, and links. Similar name-based approaches were used to 
identify software and communications links that were likewise associated with a phase. While workable, 
this made it extremely cumbersome to query the model and extract the configurations associated with a 
specific phase.   

2) More powerful linkages between the various levels of the EEIS technical architecture and the viewpoints.  
In our prior models, the various EEIS technical viewpoints (e.g., data exchanges, software, networks, 
communications, etc.) were very loosely tied together.  While a reasonably informed reader could look at 
the various viewpoints and intuit the connections between the various views, the connections were not 
really represented in the underlying models (and thus inaccessible to model queries, and formal reasoning 
and analysis). 

3) More formally represent data as attributes of the model. In previous efforts the systems engineering team 
concentrated on capturing data–often as text labels or tags.  Unfortunately this was rather unstructured 
which made it difficult to retrieve and use the data in analyses.  

4) Provide the ability to ask the model more sophisticated questions.  In previous models, we were able to ask 
the model basic questions, but the lack of the capabilities noted above prevented us from being able to 
address more complex stakeholder concerns such as: 

a. Can the system downlink all of the critical data, within the latency requirements, over the 
communications links available during this phase?  Addressing this question requires us to be able 
to not only understand the communication and data exchange configurations during this phase, but 
also the data rates, and overhead added to the exchanges by the various protocol stacks.  While a 



 
American Institute of Aeronautics and Astronautics 

 
 

5

good portion of this data was in the model, it was not in a form that would allow us to form this 
query. 

b. Are there phases when Mission Systems will not be able to communicate with the crew on MPCV?  
This involves not only knowledge of the communications links, but also the precise configuration 
of the vehicles during that phase (i.e., where are the antennas and which are occluded?). 

c. What is the impact on our ability to operate the mission if we encounter a cyber-attack on a 
particular communications link or system?  Requires us to be able to reason about the key 
functions that are on each system; how those systems are connected via software interchanges, 
networks and communications links; and potentially even how firewalls constrain how the 
networks behave. 

To formulate the EM-1/EM-2 EEIS architecture description modeling approach, we assembled a team comprised 
of EEIS subject matter experts and SysML modelers.  The consensus of the team was that our approach should 
retain the foundational viewpoints that were defined for CxP and EFT-1, but that they should be based on a rigorous 
framework comprised of meta-models, profiles, and patterns.  Further, that the models should classify the qualitative 
and quantitative concerns of domain experts in a manner that not only guides their discussions and engineering 
activities, but can also be subjected to validation, simulation, and analysis.  Additionally, the approach must classify 
the relationships between the different EEIS viewpoints and technical layers in order to address the design and 
operations concerns of the core management and technical stakeholders. 

C. New Model-Based Capabilities for Reasoning and Analysis for EM work 
 Development of new model-based capabilities relies on the fact that views are merely projections of the central 

SysML model. The content of any view is determined by the set of concerns a stakeholder wishes to see (whether 
they are represented on a diagram, in a table, or as the output of a query or model 
analysis). Thus, our work on EM-1 and EM-2 EEIS aims to add structure and 
codification to the format of the core SysML model in order to facilitate more the 
more complex kind of views and queries described in the previous section. 

This first involves standardizing the “information model,” or the way in 
which we capture attributes of elements like requirements, needlines, network 
routes, software interfaces, protocol stacks, etc. Building on a more rigorous 
information model, we then define relationships between these abstract concepts. 
This means asserting new rules: the conditions under which a physical connection 
may implement a logical one; which protocols may encapsulate and carry which 
data types and nest within other protocols; how to use those relationships to trace 
from a critical data exchange (a needline) down through the other logical and 
physical layers to collect the set of software interfaces, communications links, 
and even routing paths and hardware involved; and other rules necessary to 
address our more complex concerns. Figure 4 shows a conceptual example of 
such a set of relationships. 

The next section will provide a more detailed examination of how we have chosen to represent the necessary 
structures and relationships. 

II. MBSE Framework for EEIS Architecture Description 

Both the development of the EEIS “information model” and its use in specification of the EM EEIS application 
problem were implemented via the Systems Modeling Language (SysML)6 plug-in in the MagicDraw7 modeling 
tool.  MagicDraw is an institutionally chosen modeling tool that supports the SysML specification as the modeling 
notation for systems engineering.  The information model is the combination of a lightweight profile, meta-modeling 
and model patterns. A profile is a set of elements that represent definitions of concepts. The profile elements, or 
stereotypes, may be connected to each other, representing relationships between concepts, and may contain sets of 
tags that become available on an element when the stereotype is applied. This section of the paper will discuss these 
more technical concepts that we are using to support addressing the stakeholders’ needs. We will provide a section 
for each previously discussed capability.  

 
 

Needlines 

Software ICD 

Communication Links 

Network Routes 

Figure 4: Mapping 
Between Logical Layers 



 
American Institute of Aeronautics and Astronautics 

 
 

6

A. Configurations for Each Mission Phase - Specializing the EM-1 Mission 
The first important construct we will discuss is the idea of 

configurations. By using separate model elements to represent 
each configuration (where the configuration represents one or 
more phases, linked together in the model), we strongly assert 
that all internal constructs are directly associated (through 
ownership) with that phase, as shown in Figure 5.  This is a 
significant improvement over our previous method where we 
created one model element representing the entire mission (all 
phases) and the only way to tell what phase an element belongs 
to was through the name of the diagram on which it appears.. 

Figure 6 shows a simplified view of this composition 

structure. The generic EM-1 mission is composed of 
many systems (for the sake of simplicity, not all EM 
systems are shown). The configurations of the EM-1 
mission (On-pad and in Low Earth Orbit are shown) 
are ‘specializations’ of the generic EM-1 mission – 
they have the same set of systems. However, as we 
have shown in this figure, the MPCV configuration is 
different between On-pad and in LEO. We can capture 
these differences while retaining the common features 
of the MPCV by specializing MPCV and asserting by 
redefinition that the configurations shown ‘overwrite’ 
the inherited generic one.  

This allows us to put common properties at the 
right level: for example, the generic MPCV contains 
features such as ports and parts which are still present 
in the configurations of the On-pad and in LEO 
phases. This structure ensures that model queries and 
analysis uses the correct configurations and keeps 
elements present only where they are supposed to 
exist. 

B. Needlines as Instantiations of Mission Interface Requirements 
The driving interface requirements for EM-1 and EFT-1, as chosen by NASA program management, are written 

without regard to mission phase or segment—they merely define the capabilities required by the systems that may 
be exercised during the mission. In a rigorous model, there is a separation between the assertion that two systems 
shall have the capability to exchange some data, and the assertion that they shall exchange the data at certain times 
under certain configurations and conditions. A needline is the assertion that a data exchange is required in a certain 
configuration/operational phase. This is accomplished in the model structure by first defining the pairwise data 
exchange (according to the EM-1 Interface Requirements Document, IRD), and then attaching it to the connections 
between model elements that it “governs.”  

To be more technical: in SysML, a specification may be attached to a port that says what is allowed to flow 
through that port. These 
specifications may be attached to 
each other as seen in Figure 7, 
essentially making “pairs” of 
specifications. These pairs of 
flow definitions very neatly 
match the pairwise requirements 
that assert data exchange 
capabilities between systems.  

parts
 : Recovery Forces
 : MPCV Engineering
 : SLS Engineering
 : SARSAT
 : MO
 : GO
 : MPCV(Re-Entry)
 : SCaN
 : GPS

«Configuration»

Post Landing Configuration

Figure 5: System Configurations as Distinct 
Model Elements EM-1 StructureEM-1 Mission[Package] bdd [  ]

«block»

EM-1 Generic Mission

«Configuration»

LEO Ops, LEO to 
Lunar Orbit Transfer 

Configuration

«Configuration»

Pad Ops & Launch 
Configuration

parts
 : LAS
 : SM
 : CM

«block»

MPCV (Pad)

«block»

Multipurpose 
Crew Vehicle

parts
 : SM
 : CM

«block»

MPCV (LEO)

«block»

GO «block»

MO

{redefines mpcv} {redefines mpcv}

mpcv

Figure 6: Example of EM-1 Composition Structure 
Showing Variation of the MPCV Between Phases 

«FlowProperty»
MPCV CMD : MPCV CMD

«FlowSpecification»

Multipurpose Crew Vehicle-MO-MPCV CMD

«FlowProperty»
MPCV CMD : MPCV CMD

«FlowSpecification»

MO-Multipurpose Crew Vehicle-MPCV CMD

«requirement»

MPCV Receive CMD

«requirement»

MO Send CMD

«NeedlineAssociation»

MPCV CMD

MPCV CMD

Figure 7: Interface Requirements linked to Paired Flow 



 
American Institute of Aeronautics and Astronautics 

 
 

7

Having the pairwise 
requirements represented 
as paired specifications 
and requirements in the 
model is useful, but it is 
most powerful when 
used to specify the 
different data exchanges 
found in the mission 
configurations. As seen 
previously in needline 
viewpoints, the needline 
is expressed as a 
connector between two 
ports, one port attached 
to each system that is 
involved in the exchange. 
By attaching the flow 
specifications to the two 
ports at the ends of a 
needline connector, that 

needline becomes an instance of the connection between the specifications. It is only allowed to become an instance 
of the generic connection if the specifications on the ports match - thereby ensuring that all needlines must map to a 
generic pair of specifications, thereby mapping to EM-1’s paired requirements. The mapping of the flow 
specifications to the ports can be seen in the view as the name of the flow specification, prefaced with a colon (“:”) 
next to the port. Similarly, the instantiation of the link between the specifications shows up as the name of the link 
prefaced by a colon (“:”). This is possible because the ports are owned by the definition of the system (not the 
instance owned by the configuration), 
which means they are available in all 
configurations. 

Figure 8 illustrates another reason the 
separation of views into discrete 
configurations blocks is useful - because 
all connector elements are owned by the 
configuration block, the relationship 
between needline and configuration (and 
thus phase) is strongly asserted. Using 
the profile, we set the model software to 
infer the phase of each needline by 
looking at the phase of its owning block 
(configuration).   

C. Software Interfaces 
Software Interfaces are constructed in the model in the same pattern as needlines—the capability to exchange 

data at the software level (i.e., specification of protocol stacks, etc.) exists independent of mission phase, but the 
exchange is only implemented in certain phases. Therefore we create paired specifications of flow, connect them, 
and instantiate them between systems when they are intended to be exercised. Thus we can reason about the 

implementation of software interfaces 
and the different paths that exist at 
any mission phase.  

Software interfaces have different 
attributes of interest than needlines. 
For example, it is important to know 
more about the protocols and 
addressing implemented/required by 
the exchange, where the needline 

 : MO

 : MO-Multipurpose Crew 
Vehicle-MPCV CMD

 : MPCV (Pad)

 : Multipurpose Crew 
Vehicle-MO-MPCV CMD

«Configuration»

Pad Ops & Launch Configuration

 : MPCV(Re-Entry)

 : Multipurpose Crew 
Vehicle-MO-MPCV CMD

 : MO

 : MO-Multipurpose Crew 
Vehicle-MPCV CMD

«Configuration»

Entry, Descent and Landing Configuration

«FlowProperty»
MPCV CMD : MPCV CMD

«FlowSpecification»

Multipurpose Crew Vehicle-MO-MPCV CMD
«FlowProperty»

MPCV CMD : MPCV CMD

«FlowSpecification»

MO-Multipurpose Crew Vehicle-MPCV CMD

«Needline»

 : MPCV CMD

«Needline»

 : MPCV CMD

«NeedlineAssociation»

MPCV CMD

MPCV CMD

Figure 9: Applying the Paired Flow Specification Pattern To Configurations 
and Needlines 

Figure 8: Configurations Own Their Needlines 

Entry, Descent and Landing Configuration[Configuration] Softwareibd [  ]

 : MO

 : MO-MPCV-DEM-UDP-IP

 : MPCV(Re-Entry)

 : MPCV-MO-DEM-UDP-IP

«SoftwareConnection»

 : DEM-UDP-IP

Figure 10: Software Connection Pattern 



 
American Institute of Aeronautics and Astronautics 

 
 

8

tracks more qualitative and logical attributes. Where the specification of flow for needlines describes logical items 
(TLM, CMDs, etc.), the software interfaces do not care what the logical content of the data is, only that the 
exchange mechanisms are matched on both sides. For example, if the two systems have agreed to exchange Data 
Exchange Messages (DEMs) encapsulated in User Datagram Protocol (UDP) over Internet Protocol (IP), they do not 
care what the DEM is transporting as long as the protocols and addressing are in accordance with the interface 
specification. We will discuss the construction of protocol stacks a little later. 

An important advantage is revealed already—as we mentioned, a DEM can transport various logical information 
items that are shown and whose exchange is described in the needline viewpoint. So far, it has been difficult and 
unwieldy to map the needline data exchanges to the software interfaces that are implementing them. By having the 
configuration own these well-understood structures, it is easy to query the model to find out what software interfaces 
are available in a given phase to transport the data in the needlines of the same phase. Before, it was not possible to 
do this, as there was no distinction between the connectivity of different mission phases.  

D. Communications Viewpoint: Views and Constructs 
Like needlines and software interfaces, the communications links are usages of a capability within a phase. The 

communications links carry protocols of interest, those below the IP layer. The communications links do not care 
what kind of data or what 
logical data (and it could be 
many different pieces of logical 
data) flow between them, as 
long as they match the 
specifications asserted in the 
requirements.  

In addition to the 
communications links, we also 

want to track the existence of network interfaces. This view, often expressed within the communications viewpoint, 
establishes where some kind of point-
to-point network connection exists or 
is required, although it may exist only 
logically (in reality, it might be carried 
over other networks or tunneled, 
utilize existing systems or involve a 
complex topology that is not relevant 
to specifying the connectivity at this 
level). 

E. Routing/Hardware Constructs 
Reasoning about the data paths at various levels of abstraction is a key capability to analyzing a complete EEIS 

Architecture. We have developed model constructs for representing the most concrete elements of the EEIS to 
address the concerns of the network engineer and to include them in a multi-layer system model. 

We have constructs for routers, firewalls, addresses, workstations, subnets, etc., and paths between them. 
Strongly defining these constructs, in addition to mapping the software to the hardware and the hardware contained 
within our systems of interest, allows us to determine the set of hardware, networks, etc. involved within the 
implementation of a given needline or software interface.  

This view tends to be more static, as it is ground-system focused, and generally the ground system configuration 
does not change along with the mission phase. As such, we collect ground system pieces into ‘invariants,’ which are 
static sets of hardware connectivity and rules that may be used in some or all of the mission phases. This also allows 
us to show a more facility-oriented view, and we map the facilities to the systems in order to allow reasoning about 
implementation of various data paths.  

 

F. Protocol Stacks 
As mentioned previously, we often want to know specifics of an exchange between two pieces of software or 

systems. At the needline layer, we are concerned with things like “commands” and “telemetry.” We can talk about 

Entry, Descent and Landing Configuration[Configuration] Comms Linksibd [  ]

 : MO

 : MO-SCaN-Hardline

 : SCaN
 : SCaN-MPCV-P2P

 : SCaN-MO-Hardline

 : MPCV(Re-Entry)
 : MPCV-SCaN-P2P

«RF Link»

 : AOS Encap-AOS-LDPC «Hardline»

 : AOS Encap-AOS-TCP-IP

Figure 11: Communications Links - RF and Hardline 

Entry, Descent and Landing Configuration[Configuration] Networksibd [  ]

 : MPCV(Re-Entry)
 : IP

 : SCaN
 : IP

 : MO

 : IP

 : IP
«NetworkConnection»

«NetworkConnection»

Figure 12: Network Connection Agreements 



 
American Institute of Aeronautics and Astronautics 

 
 

9

the format of video or a command at that level, but at the software interface level, we are concerned with how to 
move those items about - how to break them up and wrap up the pieces for transmission.  

We have created constructs for making protocol stack elements in the model, 
which can be exchanged like any other item across an interface. For example, 
Figure 13 shows a simple DEM-UDP-IPD stack. The <<Over>> relationship 
indicates (and bindingly asserts) the order of encapsulation in the stack. The stack 
element is a block that is exchanged by systems, across a connection - asserting 
an agreement by each system to conform to the specification of that stack. As 
seen previously in the Communications Constructs and Software Interfaces 
sections, the stacks are associated with the specification of flow from a software 
or communications port (analogous to the pattern used to define needlines). 

There are more rules asserted in 
protocol stack definitions - for 

example, each protocol element has relationships to other protocol 
elements and to datatype elements (CMD, TLM, etc.) asserting 
allowed encapsulation. Figure 14 shows the relationships between 
(some of the) protocols for EM-1, including support for tunneling, as 
IP stacks can be further encapsulated and sent over an intermediary IP 
network, for example. Another rule governs which interfaces carry 
what kinds of stacks. As EM-1 is using IP as a network interface 
layer, the software interface layer stops at IP. Thus, the software layer 
specifications allow protocol stack constructs to flow where their 
bottom layer is IP. <<Needline>> elements may carry datatypes 
(CMD, TLM, etc.), and communication links carry protocols whose 
bottom layers may be transmitted by RF, hardlines, or other networks.  

Protocol Stack views analogous to those in EFT-1 may be created 
by inspecting the interfaces between the systems involved in 
implementing a particular data exchange. As we discuss in the next 
section, this involves cross-cutting analysis of the model across many 
levels of abstraction: not only do we need the high level data 
exchange, but the software interface that carries it, and the networks 
and communications links that carry the software interfaces. The stack 
can even be traced down to the hardware and routing paths and 
protocols, although we do not show an example of that in this paper. 

A modeler may know the full stack for a needline outright, and 
implement that in the model—creating and assigning the appropriate 
software stack and the communication stack. If they do not know the 
applicable protocol stack, they may query it from the model, if all the communications links and software interfaces 
have been populated with their stacks. Thus, while the underlying structure of the model is different, the same sorts 
of protocol stack views may be created in EM-1 as for EFT-1 EEIS architecture modeling efforts. 

G. Cross-Cutting Constructs 
The power of the EM-1 modeling approach is the ability to observe, analyze, and query the intersection of 

different views representing the concerns of different engineering disciplines and domains. Simply creating the 
framework allowing population of the previous concerns allows us a huge amount of powerful reasoning about the 
model On EM-1, we have built the underlying model structures necessary to consistently link and trace through the 
layers. By understanding the relationship between needlines, software interfaces, communications links, and 
hardware/network layers, we can easily query the model to understand critical paths, critical hardware, single points 
of failure, etc. We can either directly assert the mapping (with mapping relationships) between needlines and 
software interfaces, communications links and network routes, or we can ask the model to find routes for us, give us 
lists of involved hardware, compute link margins, etc. We can assess the effect on the system of changing one 
structure on the others: for example, compromising some subnets or software components can affect critical data 
exchanges, which we can identify by tracing through model layers and relationships. 

DEM-UDP-IPibd [  ]

 : DEM

 : IP

 : UDP

«Over»

«Over»

Figure 13: Protocol Stack Protocol Rules[Package] Protocolsbdd [  ]

«Protocol»

AOS Encap

«Protocol»

AOS

«Protocol»

UDP

«Protocol»

LDPC

«Protocol»

IP

«Protocol»

RF

«Protocol»

DEM

«Protocol»

RTP«Protocol»

CFDP

«Protocol»

TCP

«Protocol»

Hardline

«Carries»

«Carries»

«Carries»

«Carries»

«Carries»«Carries»

«Carries»

«Carries»

«Carries»

«Carries»

«Carries»

Figure 14: Subset of Allowed 
Relationships Between Protocols 



 
American Institute of Aeronautics and Astronautics 

 
 

10

An example of a cross-cutting view is shown in Figure 15. While this view would generally not be presented to a 
stakeholder, it is very useful in visualizing the traceability through the layers of abstraction. Here, we see how the 
agreement between two systems to exchange DEMs (themselves carrying CMDs, TLM, etc.) over UDP over IP 

relies on the agreement that a logical network connection shall exist between the two. Further down, that network 
connection is actually made possible by the agreements those two systems have with a third system! And those 
agreements may be implemented a RF connection, or some other network that itself relies on a hardware/routing 
configuration (not shown) that may itself be very complex. Consider that there are far more than three systems 
exchanging many types of data across many interfaces in over eight mission phases, and the need for well 
understood rules, relationships, and reasoning becomes clear. 

While we have thus far discussed only these four layers (and their requirements) across mission phases, we have 
the potential to do so much more. As we will discuss in the future work, we can incorporate functional models of the 
system and analyze the effect of hardware changes on EEIS functions. For example, we can also assess timing 
constraints, and include external models.   

III. Modeling Lessons Learned 

This more rigorous approach to constructing formal EEIS architecture description models has allowed for many 
new capabilities; however, constructing the ‘rules’ that define a system in the abstract is often challenging. The 
process involves analyzing the system to generalize the relationships between concepts, which is not an easy 
undertaking, as the concepts do not always fit neatly into complex model concerns. It requires a consistency in the 
existing system that is always achieved. Thus, there must be compromises, as a model does not allow qualitative 
exceptions, but reality may not always be placed neatly in a set of rules. Thus, the architect of the meta-model must 
study a wide variety of examples and concerns from the domains they seek to represent, in order to provide a place 
for all the concerns held by the domain experts and engineers. The domain experts and engineers must be able to 
articulate their concerns in abstract ways that can cover all possibilities, or recognize when something violates their 
own ideal rules and change it. The exercise of modeling a system is very valuable, as the places where the system 
does not fit nicely into the model reflects a place where either the system has violated some of its own rules, or the 
rules do not reflect reality. When these kinks are worked out, and everyone buys into the model, you have a product 
which everyone can stand behind and which may then be subjected to analysis and reasoning and the results may be 
regarded with a higher level of trust. 

IV. Future Work 

The constructs we have created have applications beyond just EM-1 and Human Space Flight. Currently, we 
plan to apply the mapping of hardware/network constructs, software interfaces, and data exchanges to diverse 
domains such JPL robotic missions and Smart Power Grids.  We hope that as we continue to demonstrate value 
behind these constructs and views, they will be used more widely and tested even further. We can then more 
officially build suites of reasoning tools, understand and collect common analysis needs, and build infrastructure to 
open this area to engineers with reduced learning curve and rich user support to make intersectional modeling very 
simple.   

Entry, Descent and Landing Configuration Integrated View With Stacks[Configuration] ibd [  ]

 : IP

 : TCP

 : AOS Encap

 : AOS

 : AOS Encap-AOS-TCP-IP

 : Hardline

 : DEM

 : UDP

 : IP

 : DEM-UDP-IP

 : SCaN-MO

 : DEM

 : UDP

 : IP

 : DEM-UDP-IP

 : AOS Encap

 : AOS

 : LDPC

 : AOS Encap-AOS-LDPC

 : RF

 : MPCV-SCaN
 : MPCV(Re-Entry)

 : IP

 : MPCV-SCaN-P2P

 : MPCV-MO-DEM-UDP-IP

 : MO

 : IP

 : IP

 : MO-SCaN-Hardline

 : MO-MPCV-DEM-UDP-IP

 : SCaN

 : IP

 : SCaN-MO-Hardline

 : SCaN-MPCV-P2P

«SoftwareConnection»

 : DEM-UDP-IP

«NetworkConnection»

«Hardline»
 : AOS Encap-AOS-TCP-IP

«NetworkConnection»«RF Link»
 : AOS Encap-AOS-LDPC

Figure 15: Example of a "Trace" Through the Levels of Abstraction 



 
American Institute of Aeronautics and Astronautics 

 
 

11

Acknowledgments 

The task was managed out of the Jet Propulsion Laboratory, a division of the California Institute of Technology, 
under contract with the National Aeronautics and Space Administration. The authors would like to thank Sanford 
Friedenthal for his feedback and guidance.  

References 
 

1 Constellation Program Computing Systems Architecture Description Document, CxP 70078 Rev B, August 12, 2010. 
[ITAR controlled, not available in public domain].  

2 McVittie, T., Sindiy, O., and Simpson, K., “Model-Based System Engineering of the Orion Flight Test 1 End-to-End 
Information System,” 2012 IEEE Aerospace Conference, Big Sky, MT, 3-10 March 2012. 

3 Simpson, K., Sindiy, O., and McVittie, T., “Orion Flight Test 1 Architecture – Observed Benefits of a Model Based 
Engineering Approach,” 2012 IEEE Aerospace Conference, Big Sky, MT, 3-10 March 2012. 

4 Department of Defense Architecture Framework (DoDAF), U.S. Department of Defense, Version 2.02, August 2010.  
5 Reference Architecture for Space Data Systems (RASDS) Recommended Practice, The Consultive Committee for Space 

Data Systems (CCSDS), Washington DC, USA, Issue 1, CCSDS 311.0-M-1, September 2008.  
6 “OMG Systems Modeling Language,” Object Management Group, Version 1.2, Needham, MA, June 2010. 
7 MagicDraw, Software Package, Version 17, No Magic Inc., Allen, TX, 2011. 


